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The problem mantioned in the title has repeatedly been posed [I to 41. It is unwally as- 

sumed that the shell retains its spherical shape during deformation. Below we consider 
conditions for the formation of equilibrium modes different, but similar to, the spherical 
one, It is assumed that the shell received a large uniform elongation in the subcritical state, 
and that deviations from thia state are small. 

1. We take the expression of the strain law for rubber as [4] 

Here h r3 3 are the measures of elongation, and &r.,,_ the linear strains on whome 

magnitude no donstraints are imposed; it and f; are the &st and the reduced second 

invariant of the strain 

I, = ‘/r (I,2 -+ I.cJ $- Af - 3), I,’ = 2 (11 - I*) = ‘/r (AfXf + A*%” d_ A&‘-3) (1.2) 

Here s is an arbitrary Constent; its indefiniteness is due to the assumption of invari- 

ance of the volume of the rubber during deformation; R’ is the strain potential energy of the 
rubber per unit volume. 

The function I (I,, I;, is determined by testing the given kind of rubber in aeveral 

kinds of states of stress. 

The most realistic is the four-term ~p~~mation of the fanctfon II’ proposed by 
Bidennan [S]: 

‘IV = c,r, + CJ,’ - C,I,S + c,r: (f.3) 

Here Cl. Cr. C,, C, are the elastic constants of rubber, which have the dimen8foualfty 

of a stress. The elastic modulus of rubber is expressed in terms of these constants, as 
follows: 

E - 3 (C, -I- Cr) 

The few of rubber deformation is successfully represented quite accorattfy right down 
to rupture by using the function (1.3). 
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The state of atrseo of a spherical ahell’ia biaxial, and or = 0. This affords a poss- 
ibility of determining S. 

After sabstitation of IV from (1.3), we obtain 

Ql = (C, + CJ,’ - 2C,I, + 3CiI,z) (A,* - 1,s) 

ua = (C, + C$l’ - 2CJ, + 3CJt’) (X,2 - 12) (1.4) 

Let uu and Eo denote the atress and strain.existing in the shell in the precritical 

atate. Upon paaaing to a new equilibrium mode these quantities undergo small changes. 
The principal stresaen aad strains will then be the following: 

01 = a, + Au,, ~1 = E,, -I- A&r, u, = u. + Au,, e, = co + A&r (4.5) 

The meaearea of elongation change correspondingly 

at = 1 -I- e, + Be,, 1: = i + e, + AE, 

Let ua use the notation 

4 +e,=a 0.6) 

The quantity S is determined from the condition of invariance of the volume 

(a + Aal) (a + Aut) 

We obtain because of the smallness of AE~ and Ae, 

I.1 = a + Aer, I3 == a + A+, (1.7) 

Substituting (1.7) and (1.5) into (1.2) and (1.4). we find 

Q= cl+c2~'--cs 

[ 

Aar + AS, == .4 (her -I- A&?), AjI - A:J = B (AQ - Acz, (1.9) 

A=2Ct(af~)i-2C11(21?i- ~)-2c#-t-f)(?I~-t f-3)-t- 

B=2a L .C,-tC2; -Ccs (2a*+$-- 3) _I-$c,(2+j $-3jZ] (l.lY 

These quantities play the part of ‘variable constant’ of elasticity dependent on CZ. 

2. Let us form tbe geometric relationship and assume that the shell remains s body 

of revolution during deviation from the spherical shape (Fig. 1). 
After deviation, the meridian arc segment AB t Rd8 takes the position )I ‘Ij’ -= 

=(I i- &o-l-A&t) Rdg. The displacement along the normal will be rug + tu, where wu is the 
subcritical displacement, commensurate with the radius and independent of the angle 8, 
and tu = w (8) is a small quantity. The linear u. and the angular fidisplacements are just 

as amall. 
The relative elongations in the meridian and circumferential directions are 

el = e. + AE~ = 3 + %!$ 

e2 zz e,, -i_ AQ = !flJ f v::t__” ctg 0 
R R 

(2.1) 
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Furthermore, we find the principml carvsta~s 
and we linearize the obtsined exprsm~ions sccording 
to the condition of smell w: 

(2.2) 

1 1 W+f’ct*e I 1 
ps=-RT 

- -.---3-_ , w* f w 
R”l” AC_ _ 

Pl Rz R%’ 

The current thickness of the shelf h* euoals ki,. 
1 

According to (1.7). we obtain 

1 a” ‘I ,_A.!, + A+) 
F-x\ -i-I 

3. Let ns form the equilibriam equations 

(2.3) 

Fig. 1 

After substituting pl, A, h* and then linearizing, we find 

2% PR 
a3==-r- 

(3.2) 

Aa, + AS. - ;+ (“UJ + 1u* ctg 0 d- Wn) + p; z?(L\E~ + Aez) 

2Aal -.= :! 2a (W + W’ ctg tj) -I- p!! ~‘1 (AE, -I- A%) 

With the aid of (3.2) we eliminate the pressure in the lest two espressions, and rewrite 
them as 

A\al -f- Aa, - ---$(2W+W’CtgO-/-w’) -f 2$ (AE, + AQ) 

AGO - At& = &$ (w’ ctg 0 - ?I’.) 

According to (1.9) and (2. I), we eliminate kl, Au,, de, end AF,. We then obtain 

(a - 2) (2W -t- u’ -I- I( ctg 0) = 2w -1 W’ ctg 0 .I- I#” 

b (u’ - u ctg 0) =- W’ ctg 0 - w” 

Here 

From the second Eq, 

and the first becomea 

a ==Aafuo. 6 :- Ba I og 

of (3.3). it foollows that 

1 
u=- TW’ -1. c sin 0 

w‘* -I- w’Ctg8 i- n (n -t 1)~ =- Xcos 0 

n(n + i)=r2b(3- 4 
a+b-2 

K="&!!_d 
a+b-2 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

4. Eq. (3.6) is the Legendre equation written in canonical form with a right side. 
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Sfttoa there ere no singularities at the polsa. the quantity n should take on integer values 

A-0.1, a, *** 
In order to rratiafy this condition, it ia necessary to select an appropriate degree of 

slongation a = i -f- go. 
Let as conaider equilibrium modes oortesponding to different values of n. 
For n = 0 we obtain a = 3, K = 2Cb / (h -I- I). Eqs. (3.6) end (3.5) yield 

la= &-2!hS8, Cb 

b+i 
I&=-_..-.-sine 

b -j- 1 

We exclude the function In tan !4@ from the considerations since it does not satisfy 
the tiohdition of boundednesa of w. 

Let WI agree to consider the equatorial plane aa the fixed plane, then C E 0, 

UI =- D, u=o 

Theraforrt. at some pressure there exists some other, &#tly different bat neverthe- 

fess &o kpherical mode in addition to the fundamental spherical mode. As is easiiy 

Gmisad, nndaetate correspondato extremal values of the pressure p, or p1 (Fig. 2), if 

much sxht. 
Indeed, for n = 0 the quantity a = 3, and therefore, A == 3~~ / a. On the other hand, 

by dststmining the ertrcmum of p from (3.2), we obtain 

Comparing the expressions (1.8) for u. and (1.10) 

1/ 1” f for A, we ace that nr, 

4 z- 
=A 

and therefore. the condition n = 0 and the condition 

Fig. 2 will be identical. 

Let us note that for n = 0. all the rtlationahips derived above are suitable, despite 
the resumption of small co, even for the deneription of the post-critical behavior of the 
shell &tee the latter retains its apherkxtl shape. 

For n = 1 we have a = 2, K = 0. Thea from (3.6) and (3.5) 

w==Dcos0, 
D US- 
b 

sin 9 + C siri 0 

Again aaaeming the plane of the eqoator to be fixed, we obtain w = D coa 8. a = 0. 

The shall thichnees A* becomes variable h* = nh,. According to (1.7) and (2.1) 

Therefore. for D > 0 the shell thickness decreases in the upper hemisphere, and 

fncreaoen in the lower hemisphere (Fig. 3). 
For wbseqaent n we have 

b_ @(*+f)@-2f K 
2(3-o) -rt((n+I)’ 

K=Cti(n+i)~~, w = DP, f0) f- -CDS 0 
- t&(/4+1)- 2 

sir1 0 -j- C sin 0 
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where P,(0) ie the Legendre firnction of the fimt kind. 
As in the two previous cases. we amname the plane of the sqnator in not dimplaced. Then 

For n= 2 

p 
n 

(0) = 3 cm 20 + ’ Lu_ D(3cos28+1) 
---* - 

fk 4 ’ 
u=D sin 28 

%(a - 2) 

For n = 3 

P,, (0) = ‘/a (5 COs 30 -1 3 sin 0) 

W=$D(5COS3O+!+&?COSf)), U=-_D 5 ‘t~(sin38fsio~) 
1Ga 

The respective equilibrium modes are shown in Fig. 3. 

5. The question in to which of the found equilibrium modes are stable and which are 

not, requires further analysis. However, intuitive representations predict that the spherical 

‘zero’ mode (n = 0). which may later pasm into 

the first mode (n = 1). ie~ mtable in the initial 
stage of the loading. Higher eqnilibrfam modem 

I 

f-i are apparently unstable. and not realixed in 

n=l 

U- 

lil-2 

30 

practice if, moreover, special conditiona are not 
- -t----- - produced. 

An estimation of the stability of the sphep 
ical equilibrium mode by meanm of the maximum 

_ 
in the pressure, as is done in [l mtd 21. cannot 
be considered without regard for the connection 

Fig. 3 with loading conditiona. 
If the internal cavity of the sphere in con- 

nected with a large gas capacity, and the prea- 
sure is therefore independent of the ahell deformation, then a jump increase in volume with 
subsequent rupture of the shell or passage to a new ascending branch of the p = 1 (g) 
curve will occur on reaching the extremal point (Fig. 2). Conservation of the spherical 
stable equilibrium mode is aleo poseible here foe some kinds of tension diagrama. 

If the gas is delivered to the internal cavity in small portions, as is customary, then 

passage through the maximum pressure does not involve qualitative changesin the loading 
process, and should not be considered as an indication of buckling. 

The criteria obtained above for the passage of the pressure through the maximnm (n - 0). 

and the passage to the mode with anilaterial thinning (n = 1) admit of a relatively simple 
geometric interpretation. 

Let ue aasnme there is a uniform biaxial strain diagram for rubber ut = or = ue, 

0s = 0, e1 = es = e, (Fig. 4). For the known rubber constant C,, C,, Cr and C, this 

diagram may he constructed on the baaier of (1.8). or be obtained directly from experiment, 
an is descdhed in [S]. 

For n = 0 (a = 31, the pammage of the presaare P throughout the extramam occam while 
for n = 1 (a =2), the eqnilibrfam mode with anitaletral thinning exints in the neighborhood 
of the spherical mode. 

Since ‘A -2: do* I t&z, then according to (3.4) 
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Fig. 4 

Eence, in conformity with the diagram (Fig. 41, the 

quantity a is determined by the ratio between the segments 
OB and AB, i.e.. o = OB/AB. 

As the shell elongates, this ratio diminishes, starting 
from infinity, The condition o = 3 (if it is possible) is 
satisfied for a lesser deformation than the condition (I = 2. 

This means that the passage of the pressure through the 
maximum precedes the existence of the mode n = 1. 

Depending on the kind of curve, it can be that neither 
condition will be satisfied, or condition (I = 3 will be 

satisfied (even perhaps twice), and the condition o = 2 is not satisfied, i.e., the n = 1 
mode does not exist. in particular, it can be seen after simple computations that this wilf 
hold for the two term Mooney approximation 161 for the function 5%’ - C,I, + CJ,‘, i.e., 
for C, = C, = 0. 

If the be m / (Eo) diagram were linear, the pressure wouId have a maximum at 
CL= 3/2, i.e., for a one and one-half-fold increase in the sphere’s diameter. The passage 
to the n = 1 mode would occur for a twofold increase in the diameter, i.e., for CL= 2. 

If the critical elongation is known, then the pressure is determined by means of (3.2). 
Conditions for the existence of modes with n > 1 are determined not only by the 

quantity a, but also by b, and they have not been given any successful geometric inter- 
pretation. In this case, we should turn to a numerical determination of n by means (1.8). 

(1.10). (3.4) and 13.7). 
For natural tubber with eight parts sulfur by weight [4] the constants are 

c, = 3.8 kg/cm’, Cr = 0.2 kg/cmz, C, -= 0.076 kg/cm’, C, = 3.68-10-a kg/cm’ 

or 

Performing the computations, we see that in this case (I reaches the minimum value 

o = 2.3 after having diminished from infinity, and then again increases.. This means that 
for a shell fabricated from this rubber, only a spherical equilibrium mode is possible. 
The pressure extremum occurs at o = 3 or 

Pmar 
l _ &naxR --= 1.338, 

m 
a = 1.399; &.uiu 

* _ blfr,R _- ~ E 1.218, a = 3.297 
GA 

A small change in the relationships between the constants changes the picture. Thus 

for 

c*ic, = 0.02, c31c1 = 0.03, C&r = 0.001 

we obtain four critical points 

(n=O, a=, 1.36, p*-1.25) 

(n = 1, a = 2.84, p’ = 0.63) 

(n = 1, az1.79, ~‘~1.05) 

(n = 0, a = 3.75, p* = 0.53) 

It can happen that all the critical points characterized by the number n from zero to 

infinity are located on the descending portion of the p = f (al curve. Shown in Fig. 5 are 

appropriate curves for 

c* 
- - 0.02, _- - 

Cl 

c3 z 0.06, c4 -0.0005 
Cl Cl 
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Fig. 5 

The p = f(a) curve is shown dashed beyond the point n = 1 since the post-critical 

behavior of the system is unknown here. 
A further analysis of examplea is not meaningful since the elastic conetanta change 

rather strongly and are known only for some kinds of rubber. 
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