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The problem mentioned in the title has repeatedly been posed [1 to 4]. It is usually as-
sumed that the shell retains its spherical shape during deformation. Below we consider
conditions for the formation of equilibrium modes different, but similar to, the spherical

one, It is assumed that the shell received a large vniform elongation in the subcritical state,
and that deviations from this state are small.

1. We take the expression of the strain law for rubber as [4]
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Here /\1'2 ,3 are the measures of elongation, and €, the linear strains on whose
magnitude no constraints are imposed; I, and /] aere the first and the reduced second
invariant of the strain

11 = Uy (M2 -+ A2 13'-' -3 I =2 — 1) =1 0‘;’7‘:1 + l,’l;; + A2h*—3) (1-2)

Here s is an arbitrary constant; its indefiniteness is due to the assumption of invari-

ance of the volume of the rubber during deformation; W is the strain potential energy of the
rubber per unit volume,

The function W (I,, /) is determined by testing the given kind of rabber in several
kinds of states of stress.

The most realistic is the four-term approximation of the function W proposed by
Riderman [5}:

W=Cly + CJly — Cyly? + C (1.3)
Here C;, Cy, C,, C, are the elastic constants of rubber, which have the dimensionality

of a stress. The elastic modulus of rubber is expressed in terms of these constants, as
follows:

E =3 (Cl + C?)
The law of rubber deformation is successfully represented quite accurately right down
to rapture by using the function {(1.3).
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The state of stress of a spherical shell ‘is biaxial, and o, =0. This affords a poss-
ibility of determining s.
After substitution of W from (1.3), we obtain
g, = (Cy + Car2 — 2C,I, + 3C %) (A2 — A?)
Gy = (Cy + Cah? — 2C,51, + 3C %) (A2 — AgY) (1.4)
Let oo and € denote the streas and strain-existing in the shell in the precritical

state. Upon passing to a new equilibrium mode these quantities undergo small changes.
The principal stresses and strains will then be the following:

0y, =00+ Agy,, € =& + A€y, 0,=0y + Ac,, &= €y + Ag, (1.5)
The measures of elongation change correspondingly
11=1+80+A81, A==i+ao+AE’

Let us use the notation

1+eg=a (1.6)
The quantity A, is determined from the condition of invariance of the volume
1
—_— = )\.3 ==
MAd; —1 =0 for (a F Aey) (a -+ Aes)
We obtain because of the smallness of Ag, and Ag,
l1=’1+A8], l.g =uo | AS-;, As —4-171 (1——————Ael 1 Aeg) (17}
a a

Substitating (1.7) and (1.5) into (1.2) and (1.4), we find
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Asy -+ A3y = A (Aey -} Aes), A3 — Asy = B (Ae; — Agy) (1.9)
A=2C (a +2 ) 120 (z: 4 ) 203[(0; - .2__) (2:-2 + _’7 - 3) +-
- h( —._) ]+3c (2 + .&_4—3)[ (24 ai_s) (H 2 ) 42 (a-.;_)J
B=2a[Cl+Cg£-‘~—C (2a +1 _3) +3 C;(I’a n %_3;)2] (1.10)
These quantities play the part of ‘variable constant’ of elasticity dependent on a.

2. Let us form the geometric relationship and assume that the shell remains a body
of revolution during deviation from the spherical shape (Fig. 1).

After deviation, the meridian arc segment AB = Rd# takes the position 4’5’
=(1+ €,+ Ag,) RdD. The displacement along the normal will be w, + w, where wo is the
subcritical displacement, commensurate with the radius and independent of the angle §,
and w = w (@) is a small quantity. The linear u, and the angular } displacements are just

as small.
The relative elongations in the meridian and circumferential directions are

81———80+A81 w0+w+u

€2 == €9 -} Agy = gi’ + u.):}:t;?ctg 0 (2.1)
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Furthermore, we find the principal curvatores
and we linearize the obtained expressions according
to the condition of amall w:

(2.2)
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The current thickness of the shell A* equals A},.
According to (1.7), we obtain

1
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3. Let us form the equilibriam equations
So - Agy 6() AL p Gy -}~ ‘\‘;l P
, Rtfaypatle_p, et ray
Fig. 1 f P2 g ps  2k*
After substituting p,, p;, A* and then linearizing, we find
26 _pR (3.2)
at  k
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With the aid of (3.2) we eliminate the pressure in the last two espressions, and rewrite
them as

Asy -} Acg.._m (2w w ctg 0 - w”) -} 250 (Ae, + Aes)
Aﬁg — Adg = }—z—aw (w’ Ctg 0— 21*')
According to (1.9) and {2.1), we eliminate Aoy, Ac,, Ag, and Ag,. We then obtain

(@ —2) 2w+ u" 4 uwetg0) == 2w -+ wetg0 -+ w”

b(u —uctgl) = w clg 0 — '’ {3.3)
Here

a == Aa [ o, b= Ba/ao, 3.4

From the second Eq. of (3.3), it follows that

1
= — 7w 4 Csind {3.5)
and the first becomesn
v twetgl+nin+ 1w Kcos0 {3.6)
2b(3—-a) b{a--2)
1 =T =2 .

n(n-41) ppry K=2C_— iy (3.7)

4. Eq. (3.6) is the Legendre equation written in canonical form with a right side.
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Since there are no singularities at the poles, the quantity n should take on integer values
axl.1,2, ..

In order to satisfy this condition, it is necessary to select an appropriate degree of
elongation a = 1 + &,.

Let us consider equilibrium modes corresponding to different values of n,

Forn =0 weobtain 2 = 3, X = 2Cb / (b -+ 1). Egs. (3.6) and (3.5) yield

w=D—_""_co0s0, u= ch

+i b1

We exclude the fanction In tan %0 from the considerations since it does not satisfy
the cotidition of boundedness of w.
Let us agree to consider the equatorial plane as the fixed plane, then € =0,

w=D, u=20

Therefore, at some pressure there exists some other, slightly different but neverthe-
less also spherical mode in addition to the fundamental spherical mode. As is easily
summised, such a state correspondsto extremal values of the pressure p, or p, (Fig. 2), if

such exist,
Indeed, for n = 0 the quantity a = 3, and therefore , A == 3¢,/ @. On the other hand,

by determining the extremum of p from (3.2), we obtain

sin®

ds, _ 35
P ! dx e
2 Cowmparing the expressions (1.8) for ¢o and (1.10)
P for A, we see that
doy __
& @

and therefore, the condition » = 0 and the condition
Fig. 2 will be identical.

Let us note that for n = 0, all the relationships derived above are suitable, despite
the assumption of small w, even for the description of the post-critical behavior of the
shell since the latter retains its spherical shape.

Forn =1 we have a = 2, K = 0. Then from (3.6) and {3.5)

w=Dcos9, u= sme+Csm€)

b
Again assuming the plane of the equator to be fixed, we obtain w = D cos 0, u=0.
The shell thickness A* becomes variable A* = AA,. According to (1.7) and (2.1)

h 2D
A — =22
== (i Ta cosB)

Therefore, for D > 0 the shell thickness decreases in the upper hemisphere, and
fncreases in the lower hemisphere (Fig. 3).
For subsequent n we have
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where P_(0) is the Legmdre function of the first kind.
As in the two previous cases, we assume the plane of the equator is not displaced. Then
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The respective equilibrium modes are shown in Fig. 3

5. The question in to which of the found equilibrium modes are stable and which are
not, requires further analysis. However, intuitive representations predict that the spherical
‘zero’ mode (n = 0), which may later pass into
the first mode (n = 1), is stable in the initial
stage of the loading. Higher equilibrium modes
are apparently unstable, and not realized in
n=3 practice if, moreover, special conditions are not
- produced.

An estimation of the stability of the spher-
ical equilibrium mode by means of the maximum
in the pressure, as is done in [1 and 2], cannot
be considered without regard for the connection

Fig. 3 with loading conditions.
If the internal cavity of the sphere is con-
nected with a large gas capacity, and the pres-
sure is therefore independent of the shell deformation, then a jump increase in volume with
subsequent rupture of the shell or passage to a new ascending branch of the p = £ (&)
curve will occur on reaching the extremal point (Fig. 2). Conservation of the spherical
stable equilibrium mode is also possible here foe some kinds of tension diagrams.

If the gas is delivered to the internal cavity in small portions, as is customary, then
passage through the maximam pressere does not involve qualitative changesin the loading
process, and should not be considered as an indication of buckling.

The criteria obtained above for the passage of the pressure through the maximum (n = 0),
and the passage to the mode with unilaterial thinning (n = 1) admit of a relatively simple
geometric interpretation.

Let us assume there is a uniform biaxial strain diagram for rubber 0, = g, = 04,

03 = 0, &, = &4 = & (Fig. 4). For the known rubber constant C,, C,, C, and C, this
diagram may be constructed on the basis of (1.8), or be obtained directly from experiment,
as is described in [5].

For n = 0 (a = 3), the passage of the pressure P throughout the extremum occurs while
for n = 1 (a =2), the equilibrium mode with unitaletral thinning exists in the neighborhood
of the spherical mode.

Since ‘4 = do, / da, then according to (3.4)
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6‘ a=—= d_s. g
dx 6
¢ Hence, in conformity with the diagram (Fig. 4}, the

quantity a is determined by the ratio between the segments
OB and 4B, i.e., a = OB/AB.

As the shell elongates, this ratio diminishes, starting
from infinity. The condition a = 3 (if it is possible) is
satisfied for a lesser deformation than the condition a = 2.
This means that the passage of the pressure through the
maximum precedes the existence of the mode n = 1.

Fig. 4 Depending on the kind of curve, it can be that neither
condition will be satisfied, or condition a = 3 will be
satisfied (even perhaps twice), and the condition a = 2 is not satisfied, i.e., the n =}
mode does not exist. In particular, it can be seen after simple computations that this will
hold for the two term Mooney approximation [6] for the function W = Cily + G 1y, i,
for Cy=C,=0.

If the o¢ = [ {€) .diagram were linear, the pressure would have a maximum at
a=3/2, i.e., for a one and one-half-fold increase in the sphere’s diameter. The passage
to the n = 1 mode would occur for a twofold increase in the diameter, i.e., for a= 2,

If the critical elongation is known, then the pressure is determined by means of (3.2).

Conditions for the existence of modes with n > 1 are determined not only by the
quantity a, but also by b, and they have not been given any successful geometric inter-
pretation. In this case, we should turn to & numerical determination of n by means (1.8),
(1.10), (3.4) and (3.7).

For natural rubber with eight parts sulfur by weight [4] the constants are

C, = 3.8kg/em?, C, = 0.2kg/em?, Cy = 0.076kg/cm?, C, = 3.68+10~ kg/cm?

or
Ca vax C C
gL 0.0.)3{), _.? == 002, _/: = {, 7
o G . & 0.00007

Performing the computations, we see that in this case a reaches the minimum value
a = 2.3 after having diminished from infinity, and then again increases.. This means that
for a shell fabricated from this rubber, only a spherical equilibrium mode is possible.
The pressure extremum occurs ata =3 or

Pmax® ) Pain® _
Paax® = mcal; =1.338, o==1399 pu.*= ;%1'_;!_ ==1.218, a=3.297
A small change in the relationships between the constants changes the picture. Thus

for

C,IC, = 0.02, CofC; = 0.03, C3/Cr = 0.001

we obtain four critical points
(n=0, a=,1.36, p*=1.25) (n=1, a:=1.79, p*=1.05)
(n=1, a =284, p*==0.63) (n=0, @ =23.75, p*==0.53)

It can happen that all the critical points characterized by the number n from zero to
infinity are located on the descending portion of the p = f (@} curve, Shown in Fig. 5 are
appropriate curves for

C. C C
2=0.02, 22— 0.04, 24 = 0.0005
C, C, Cy
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The p = f{(a) curve is shown dashed beyond the point n = 1 since the post-critical
behavior of the system is unknown here,

A further analysis of examples is not meaningful since the elastic constants change
rather strongly and are known only for some kinds of rubber.
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